Immunology

In the research area Immunology we focus on the description and research of the human adaptive immune system.The human adaptive immune system plays a vital role in the detection of potential pathogens, diseases that are difficult or impossible to cure, such as various types of cancer and autoimmune diseases. We also rely on the functionality of our immune system during transplantation processes.One of the main tasks here is the identification and description of the components and signal pathways which lead to a specific immune reaction or which differ in diseased and supposedly healthy individuals. This makes an important contribution to the explainability of various diseases and the development of new, innovative therapies.The latest technologies in molecular biology generate large amounts of data that have to be analyzed efficiently. We here mainly deal with the analysis of genetic data. This includes the analysis of gene expressions, database analyses and the identification of mutations. The main focus is on diseases such as leukemia, but also organ rejection reactions and infectionswith various pathogens such as Helicobacter pylori.Since 2012, we have been developing the ImmunExplorer software, which enables algorithms for the analysis of the human immune repertoire, the immunoglobulins and T-cell receptors, from blood and tissue data. An extensive expansion and continuation of ImmunExplorer, namely ImmunoDataAnalyzer, will be published soon in 2020. In close cooperation with our partners at MedUni Vienna, AKH Vienna, University of Salzburg and the Hospital of the Barmherzigen Brüder we strive to advance the research area and intensify national and international cooperation.

 

 

Selected Publications

2019 Roman Reindl-Schwaighofer, Julia Vetter, Johannes Weinberger, Susanne Schaller, Andreas Heinzel, Guido Gualdoni, Constantin Aschauer, Kira Jelencsics, Karin Hu, Stephan M. Winkler, and Rainer Oberbauer: T-Cell Repertoire of Tissue Infiltrating T-cells at Time of Rejection American Transplant Congress 2019

Selected Projects

NGS assessment of donor reactive T cell repertoire

Following the introduction of highly potent immunosuppressive regimens in combination with induction therapy, a significant reduction of acute rejection episodes and an improvement in short term graft survival have been achieved. However, a small number of transplanted organs continue to be lost following an acute rejection (AREJ) episode, but long-term graft function and survival following this kind of immunological injury poses even greater problems to patient management.

Two principal histologic forms of acute rejection are distinguished: a) acute cellular rejection (T-cell mediated) and b) acute anti-body mediated rejection. Cellular rejection with CD8+ and CD4+ T lymphocytes plays a central role and accounts for the larger fraction of acute rejection episodes. Lymphocyte infiltrates in the kidney are the hallmark of T-cell mediated rejection. T cells require at least two signals: The first is delivered when the T cell receptor (TCR) binds to the MHC-allopeptide complex on APCs. The second signal termed “costimulation” involves ligation of specific molecules on the surface of T cells to molecules on APCs, e.g. CD28 binds CD80 and CD86 molecules on APCs fostering the cellular immune response. In this regard, the nature of the lymphoid cells that infiltrate the transplanted kidney is of special interest. Little is known about the molecular nature of these infiltrates, particularly as it relates to the T-cell receptor (TCR) repertoire.


Head

Prof.(FH) DI Dr. Stephan M. Winkler

Researchers

Susanne Schaller, MMSc

Prof.(FH) DI Dr. Stephan M. Winkler

Julia Vetter

Duration

10/2017 - present

Research Areas

Immunology

DataScience

Research Institutions

University of Applied Sciences, Upper Austria, Hagenberg Campus

Medical University of Vienna

Back to Projects