Data Science

In the research area Data Science, we focus on the development and application of data-driven methods for solving biological, medical, and technical problems. In close cooperation with our partners from research and industry, we develop algorithms for preprocessing and analyzing data using statistical methods and machine learning, as well as visualizing and interpreting the results. For example, within the project LeiVMed Online we develop a platform for benchmarking and visualizing data of treatments of patients in hospitals and developing prediction models for the outcome of treatments.

In many of our projects, we see the need for customized data processing pipelines due to the heterogeneity and complexity of data structures in real world processes and systems. We use applied statistics as well as numerous machine learning approaches, including black box methods (deep neural nets, random forests, gradient boosted trees, etc.) and white box methods (symbolic regression by genetic programming). We build our knowledge discovery pipelines on a variety of different frameworks, especially python scikit-learn, tensorflow, pytorch, MATLAB, and HeuristicLab.

 

 

Selected Publications

Selected Projects

Tomo3D

Moderne Fluoreszenz-Bildgebungstechniken gewinnen in allen Forschungsbereichen der Life Sciences, speziell in der biomedizinischen Diagnostik, z.B. in den Bereichen Tissue Engineering und Zell-Analyse im Mikro- und Nanometer-Bereich, kontinuierlich an Bedeutung. Im Rahmen des Projekts TOMO3D soll ein Fluoreszenzmikroskopie-Setup zur 3D Bildgebung an der FH OÖ aufgebaut werden. Durch dieses Setup soll es möglich werden, die Kombination einer dreidimensionalen Stage mit Fluoreszenzmikroskopie in der Diagnostik und im Monitoring in der Biomedizin einsetzen zu können. In Kombination mit Methoden der Bioinformatik, die in diesem Projekt entwickelt werden, sollen folgende biomedizinische Forschungsziele erreicht werden: Ermöglichung von a) mikroskopischen Analysen von Knorpelgewebe in 3D im Zusammenhang mit regenerativer Medizin und Tissue Engineering, b) nanoskopischen 3D-Untersuchungen von Gewebe zur Klassifikation von Krankheitsfortschritten, und c) Proteindichteanalysen von 3D-Polymerstrukturen und Gewebeschnitten.


Head

Prof.(FH) DI Dr. Stephan Winkler

Researchers

Daniela Borgmann MSc

Elisabeth Daniel MSc

Lisa Obritzberger MMSc

Susanne Schaller MMSc

Duration

2015 - present

Research Areas

ImageAnalysis

DataScience

Research Institutions

University of Applied Sciences, Upper Austria, Hagenberg Campus

University of Applied Sciences, Upper Austria, Linz Campus

Research focus

Software technology and application 

 

 

Back to Projects